8-bit addressable latch

- Combines demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable

FEATURES

- · Common reset input
- Useful as a 3-to-8 active HIGH decoder
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT259 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT259 are high-speed 8-bit addressable latches designed for general purpose storage applications in digital systems. The "259" are multifunctional devices

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

capable of storing single-line data in eight addressable latches, and also 3-to-8 decoder and demultiplexer, with active HIGH outputs (Q_0 to Q_7), functions are available.

The "259" also incorporates an active LOW common reset $(\overline{\text{MR}})$ for resetting all latches, as well as, an active LOW enable input ($\overline{\text{LE}}$).

The "259" has four modes of operation as shown in the mode select table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs.

In the 3-to-8 decoding or demultiplexing mode, the addressed output follows the state of the D input with all other outputs in the LOW state. In the reset mode all outputs are LOW and unaffected by the address $(A_0 \text{ to } A_2)$ and data (D) input. When operating the "259" as an addressable latch, changing more than one bit of address could impose a transient-wrong address. Therefore, this should only be done while in the memory mode. The mode select table summarizes the operations of the "259".

SVMBOL		CONDITIONS	TYP			
STNIBUL	FARAMETER	CONDITIONS	НС	нст		
t _{PHL/} t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V				
	D to Q _n		18	20	ns	
	$A_n, \overline{LE} \text{ to } Q_n$		17	20	ns	
t _{PHL}	\overline{MR} to Q_{n}		15	20	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	19	19	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

 f_o = output frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

74HC/HCT259

8-bit addressable latch

74HC/HCT259

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	1.50
LE	1.50
D	1.20
MR	0.75

8-bit addressable latch

74HC/HCT259

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

SYMBOL	PARAMETER		T _{amb} (°C)						TEST CONDITIONS		
		74HCT									
		+25		-40 TO +85		-40 TO +125		UNII		WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(•)	
t _{PHL} / t _{PLH}	propagation delay D to Q _n		23	39		49		59	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay A _n to Q _n		25	41		51		62	ns	4.5	Fig.8
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		22	38		48		57	ns	4.5	Fig.6
t _{PHL}	propagation delay MR to Q _n		23	39		49		59	ns	4.5	Fig.9
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7
t _W	LE pulse width LOW	19	11		24		29		ns	4.5	Fig.6
t _W	MR pulse width LOW	18	10		23		27		ns	4.5	Fig.9
t _{su}	set-up time D to LE	17	10		21		26		ns	4.5	Fig.10
t _{su}	set-up time A _n to LE	17	10		21		26		ns	4.5	Fig.11
t _h	hold time D to LE	0	-8		0		0		ns	4.5	Fig.10
t _h	hold time A _n to LE	0	-4		0		0		ns	4.5	Fig.11